首页 科学世界 数理化 正文

科学家在半导体中生成新类型的量子比特(量子芯片替代半导体集成电路)

比超级计算机快百万亿倍,仅是量子计算“星辰大海”的**步 早在20世纪80年代,美国著名物理学家费曼提出了按照量子力学规律工作科学家在半导体中生成新类型的量子比特的计算机的概念,这被认为是最早的量子计算机的构想,此后 科技 界就没有停止过 探索 。 近年来,量子计算机领域频频传来重要进展型丛培科学家在半导体中生成新类型的量子比特:美国霍尼韦尔公司表示研发出6

科学家在半导体中生成新类型的量子比特(量子芯片替代半导体集成电路)

比超级计算机快百万亿倍,仅是量子计算“星辰大海”的**步

早在20世纪80年代,美国著名物理学家费曼提出了按照量子力学规律工作科学家在半导体中生成新类型的量子比特的计算机的概念,这被认为是最早的量子计算机的构想,此后 科技 界就没有停止过 探索 。

近年来,量子计算机领域频频传来重要进展型丛培科学家在半导体中生成新类型的量子比特:美国霍尼韦尔公司表示研发出64量子体积的量子计算机,性能是上一代的两倍;2020年底,中国科学技术大学潘建伟教授等人成功构建76个光子的量子计算机“九章”;2月初,科学家在半导体中生成新类型的量子比特我国本源量子计算公司负责开发的中国首款量子计算机操作系统“本源司南”正式发布……

作为“未来100年内最重要的计算机技术”“第四次工业革命的引擎”,量子计算对于很多人来说,就像是属于未来的黑 科技 ,代表着人类技术水平在想象力所及范围之内的巅峰。世界各国纷纷布局量子计算并取得不同成就后证实,量子计算虽然一直“停在未来”,但“未来可期”。

20世纪60年代,平面型集成电路问世,光刻技术成为了半导体元器件性能的决定因素:只要光刻精度不断提高,元器郑郑件的密度也会相应提高。因此,平面工艺被认为是“半导体的工业键”,也是摩尔定律问世的技术基础。

摩尔定律指出,平均每18个月,集成电路芯片上所集成的电路数目就翻一倍。虽然这并不是一个严谨的科学定律,但在一定程度上反映了信息化大数据时代人类对计算能力指数增长的期待。

随着芯片集成度不断提高,我们的手机、电脑等电子产品也在不断更新换代。那么,摩尔定律会不会被终结?

摩尔定律的技术基础天然地受到两种主要物理限制:一是巨大的能耗让芯片有被烧坏的危险。芯片发热主要是因为计算机门操作时,其中不可逆门操作会丢失比特,每丢失一个比特就会产生相应热量,操作速度越快,单位时间内产生的热量就越多,计算机温度必然会迅速上升,必须消耗大量能量用于散热,否则芯片将被高温烧坏。

二是量子隧穿效应会限制集成电路的精细程度。为了提高集成度,晶体管会越做越小,当晶体管小到只有一个电子时,量子隧穿效应就会出现。在势垒一边平动的粒子,当动能小于势垒高度时,按照经典力学,粒子是不可能越过势垒的;而对于微观粒子,量子力学却证明它仍有一定的概率贯穿势垒,实际也是如此,这种现象称为隧穿效应。简单来说,当集成电路的精细程度达到了一定级别,特别是当电路的线宽接近电子波长的时候,电子就通过隧穿效应卜唯而穿透绝缘层,使器件无**常工作。

鉴于以上两点,物理学家预言摩尔定律终将终结。现有基于半导体芯片技术的经典计算机,芯片集成密度不可能永远增加,总会趋近于物理极限,应付日益增长的数据处理需求可能越来越困难。

最新一代的英特尔酷睿处理器,它的芯片每一平方毫米的面积已经集成了一亿个晶体管。我国的太湖之光超级计算机,大约用了四万多个CPU。如果摩尔定律终结,提高运算速度的途径是什么?破局的方向指向了量子计算。

给经典计算机带来障碍的量子效应,反而成为了量子计算机的助力。

费曼认为微观世界的本质是量子的,想要模拟它,就得用和自然界的工作原理一样的方式,也就是量子的方式才行。他将物理学和计算机理论联系到一起,提出了基于量子态叠加等原理的量子计算机概念。

比特是信息操作的基本单元,基于量子叠加态原理,科学家们尝试用量子比特取代经典比特。

经典比特有且仅有两个可能的状态,经常用“0”和“1”来表示,就好比一个开关,只有开和关两个状态。而量子比特就好比一个旋钮,是连续可调的,它可以指向任何一个角度。也就是说,量子比特不只有两个状态,可以处于0和1之间任意比例的叠加态。想象一下,一枚摆在桌上静止的硬币,你只能看到它的正面或背面;当你把它快速旋转起来,你看到的既是正面,又是背面。于是,一台量子计算机就像许多硬币同时翩翩起舞。

假设一台经典计算机有两个比特,在某一确定时刻,它最多只能表示00、10、01、11这四种可能性的一种;而量子计算由于叠加性,它可以同时表示出四种信息状态。

对于经典计算机来说,N个比特只可能处在2N个状态中的一种情况,而对于量子比特来说,N个量子比特可以处于2N个状态任意比例叠加。理论上,如果对N个比特的量子叠加态进行运算操作,等于同时操控2的N次方个状态。随着可操纵比特数增加,信息的存储量和运算的速度会呈指数增加,经典计算机将望尘莫及。

有报道指出,一台30个量子比特的量子计算机的计算能力和一台每秒万亿次浮点运算的经典计算机水平相当,是今天经典台式机速度的一万倍。据科学家估计,一台50比特的量子计算机,在处理一些特定问题时,计算速度将超越现有最强的超级计算机。

量子计算机是宏观尺度的量子器件,环境不可避免会导致量子相干性的消失(即消相干),一旦量子特性被破坏,将导致量子计算机并行运算能力基础消失,变成经典的串行运算,这是量子计算机研究的主要障碍。

即便量子计算机的研究已经出现诸多成果,但还处在早期发展的阶段。倘若类比经典计算机,今天的量子计算机几乎是位于经典计算机的电子管时代,就连最底层的物理载体还没有完全形成。

目前主流的技术路径有超导、半导、离子阱、光学以及量子拓扑这五个方向,前四种路径均已制作出物理原型机。各国科学家研究比较多、也相对成熟的有超导量子计算、半导量子点量子计算等。

超导量子计算的核心单元是一种“超导体-绝缘体-超导体”三层结构的约瑟夫森结电子器件,类似晶体管的PN结。其中间绝缘层的厚度不超过10纳米,能够形成一个势垒,超导电子能够隧穿该势垒形成超导电流。与其他量子体系相比,超导量子电路的能级结构可通过对电路的设计进行定制,或通过外加电磁信号进行调控。而且,基于现有的集成电路工艺,约瑟夫森结量子电路还具有可扩展性。这些优点使超导量子电路成为实现可扩展量子计算最有前景的物理方案之一。

量子点量子计算,是利用了半导体量子点中的电子自旋作为量子比特。量子点是一种有着三维量子强束缚的半导体异质结结构,其中电子的能级是分立的,类似于电子在原子中的能级结构,因此被称为“人造原子”。量子比特编码在电子的自旋态上,使用微波脉冲或者纯电学的方法进行单量子比特操控。量子点方案的优点则是量子位可以是嵌套在固态量子器件上,这与经典计算机的大规模集成电路的设计相似,被认为是最有可能实现大规模量子计算机的候选方案。

量子计算机的运算速度取决于其能够操控的量子比特数。由于消相干的存在,操控量子比特难免出现错误,从而计算失效。以超导量子计算为例,一亿次的操控最多只允许犯一次错误。操控量子比特难度如此之大,以至于早期许多科学家认为量子计算机不可能制造出来。

目前而言,超导量子芯片要比半导体量子芯片发展得更快。2019年,谷歌公司发布了53个超导量子比特的量子计算原型机“悬铃木”。2020年12月4日,中国科大潘建伟团队构建起76个光量子的量子计算原型机“九章”,处理高斯玻色取样的速度比目前最快的超级计算机快一百万亿倍。

不过,无论是“悬铃木”还是“九章”,目前都只是仅能够处理运算特定数学问题的“原型机”。而我们的“星辰大海”是造出有大规模容错能力的通用量子计算机。毕竟,量子时代的“未来已来”,超强的量子计算值得期待。

赢得世界'太空材料之母'是中国那位科学家

太空材料之母——林兰英 她一生中获得了无数科学家在半导体中生成新类型的量子比特的**,成功研制出了我国**根锗单晶和硅单晶,最早在世界上成功完成在太空中生成砷化镓单晶的试验,并且她还是世界上利用太空材料制成半导体器件的**人。她就歼卖毕是我国著名科学家林兰英,现为中科院院士,是世界半导体研究领域的奇才,人称“太空材料之母”。

她的这种永争**的精神,早在上中学的时候就已形成,并伴随她一生。从初中到高中六年中,**名全被她垄断了,她连拿了12个**。这与她天性聪慧、机敏有关,但更重要的是她勤奋好学、奋力拼搏,氏芹有一种永争**的意识激励着她去奋斗。

林兰英生于福建莆田一个知识分子家庭,当地的人们深受“女子无才便是德”的封建思想影响,对于女孩子上学嗤之以鼻。父亲虽然受过高等教育,思想较开化,但父亲在外工作无暇顾家。在家操持的母亲颇有封建家长的作风,对女子上学抱有根深蒂固的成见。因此,当年仅6岁的小兰英见到同年龄的小男伴纷纷去学堂上学时,她带着对读书的艳羡和企盼去求母亲也要上学。但是却遭到母亲的严厉斥责。受挫后的小兰英读书的渴望更加强烈,她下决心一定要去上学。小兰英见苦苦哀求母亲仍不奏效,她就开始以不吃不喝来要挟。母亲的一颗爱女之心倍受折磨,也被她读书的决心所打动。小兰英终于可以上学了。她一边学习,一边还要帮助家里做家务,就是在这样的条件下,她还是取得了优异的成绩。

小学美好快乐的学习生活很快结束了,小兰英要升中学了。但像她上小学一样,她再一次地受到了母亲的阻拦。这时候她已经长大了,再也不会用绝食的手段来要挟母亲了。她听说莆田私立中学有这样一个规定科学家在半导体中生成新类型的量子比特:入学考试和期末考试成绩列前三名的,不收学杂费。配猛她想这就是**可以说服母亲的理由。于是,小兰英向妈妈保证:每个学期都考**名,不让家里为她交学杂费。母亲无话可说了。她又可以上学了,但她也知道,从此她要付出更多的努力,否则上学的机会就会丧失。在此后的六年中,她以惊人的毅志,顽强拼搏的精神刻苦学习,果然如她所说 :她每个学期都是**名,成为连拿12个**的中学生。而这种永争**的意识也深深扎根于她的头脑中,成为一生奋斗的目标。读大学、硕士、博士,直到参加科学研究,她都以这种精神激励自己,她也因此取得了令人瞩目的成就。

量子芯片的中国半导体量子芯片研究

中科院量子信息重点实验室教授郭国平、肖明与合作者成功实现科学家在半导体中生成新类型的量子比特了半导体量子点体系的两个电荷量子比特的控制非逻辑门科学家在半导体中生成新类型的量子比特,成果于7月17日发表在《自然—通讯》上 。中科院量子信息重点实验室郭国平教授半导体量子芯片研究组及其合作者又破世界纪录,通过实验成功实现世界上最快雹悉速量子逻辑门操作,取得半导体量子芯片研究的重要突破。

传统砷化镓半导体量子点量子比特研究

半导体量子点由于其良好的扩展性和集成性是实现固态量子计算的最有力候选者。由单电子在双量子点中的左右量子点的占据态编码的电荷量子比特有众多的优越性,成为量子计算研究最热门的研究方向。首先,电荷量子比特门操作速度可以较大范围的调节,达到GHz的频率;其次,电荷量子比特的制备、操控和读取可以用全电学操控来完成;最后,电子电荷自由度作为量子比特可以与现有信息处理技术兼容,并且可以利用先进的半导体工艺技术完成大面积的扩展和集成。一个单量子比特逻辑门操控和一个两量子比特受控非门可以组合任意一个普适量子逻辑门操控,而实现普适量子逻辑门操控是实现量子信息处理过程的最关键技术。国际上主要有美国哈佛大学、威斯康星大学等集中在电子电荷量子比特的量子计算研究,科学家在半导体中生成新类型的量子比特我们研究团队在2013年成功实现了半导体超快普适单比特量子逻辑门(Nat. Commun. 4:1401 (2013),经过两年的摸索和积累,研究组在2015年成功实现两个电荷量子比特的控制非门,其操控最短在200皮秒以内完成。相对于国际上目前电子自旋两量子比特的最高水平,新的半导体两量子比特的操控速度提高了数百倍。单比特和两比特的量子逻辑门的完成,表明量子计算所需的所有基本量子逻辑门都可以在半导体上通过全电控制方式实现。这种方式具有操控方便、速度超快、可集成化、并兼容传统半导体电子技术等重要优点,是进一步研制实用化半导体量子计算的坚实基础。

图示为单量子比特操控和两量子比特操控实验样品和实验测量图。

新型非掺杂砷化镓和硅锗异质结量子比特的制备和操控研究

传统的砷化镓量子点是基于掺杂的砷化镓铝异质结中的二维电子气上形成的。由于掺杂不可避免的削弱电子电荷和自旋的稳定性,从而增加了量子比特受到掺杂电子电荷噪声的影响,缩短了量子比特的弛源弯乎豫时间,加快了量子比特的的退相干过程。以解决上述问题为目标,分别采用非掺杂GaAs和SiGe异质结进行新型双层结构量子点器件的设计和制备,减小电荷噪声的影响,排除核自旋的影响,延长量子比特的退相干时间,实现单电子电荷和自旋量子比特的制备、测量和操控。新型量子点器件是继承传统量子点器件可集成性等优势的同时,又具有高迁移率、强稳定性的增强型量子点研究体系,是实现多量子比特耦合的基础。基于非掺杂砷化镓异质结的电荷量子比特和基于非掺杂SiGe异质结的电子自旋量子比特研究都是相关研究中的新兴热门领域,特别是基于SiGe量子点的自旋量子比特由于其没有核自旋,具有较长的量子退相干时间。我们研究团队成功制备了两种材料的双量子点器件,完成了砷化镓量子点的表征和电子弛豫时间以及退相干时间的测量,正在开展进一步的实验研究。图示为新型非掺杂砷化镓和硅锗双量子点样品的结构图和实验测量。

半导体量子点与超导腔耦合的复合量子比特以及多量子比特扩展

基于半导体量子点的量子计算方案都是利用相邻量子点量子比特之间的交换相互作用来实现多比特的量子逻辑门操作,非近邻量子比特之间的逻辑门操作需要通过一系列近邻门操作组合完成,这大大增加了计算过程中逻辑门操作的数量和难度。最近有些理论工作提出借用超导量子比特系统中的超导传输谐振腔等概念来实现半导体量子点非近邻量子比特耦合的量子数据总线,但是相应的实验还处于起步和摸索阶段。不过半导体量子点和超导谐振腔为我们提供一种崭新的物理闹猛体系,同时很好的兼容了传统半导体产业各种微纳米工艺和技术,在未来的信息处理器中具有广阔的应用前景。我们团队提出了最早的非强耦合条件下的超导传输谐振腔与量子点量子计算理论方案(Phys. Rev. Lett. 101 , 230501 (2008).),大大降低了实验的要求和难度。

我们研究团队在半导体量子点的制备和操控方面积累了大量的实验经验和技术,对超导谐振腔体的制备和表征也掌握关键的工艺技术。经过几年研究积累,完成了超导谐振腔与石墨烯双量子点以及超导谐振腔与两个石墨烯双量子点实现远程耦合的实验研究,以此为基础着力于解决半导体量子点多比特之间的耦合问题,具有很大的理论和实验挑战性。我们目前的这些前期工作已属于世界研究前列,结合已开展的半导体量子点处理单元和测量单元研究,集中推进基于固态量子比特的多量子比特扩展研究。

基于新型二维材料(Graphene,TMDS)体系的量子器件制备和量子物理研究

二维材料体系由于其独特的结构和性质优越性,被科学界大量研究,特别是单层石墨烯材料,以及最近掀起一波研究热潮的TMD材料体系。我们研究团队在实验室内设计制备了多种石墨烯量子点元器件,2009年在国际上首先制备出石墨烯量子点+单电子测量器的芯片( Applied. Phys. Letters 97, 262113 (2010)),特别是制备出了世界上**块并联的石墨烯双量子点样品( Applied. Phys. Letters 99, 112117 (2011)),开发了集成测量读出系统的全石墨单电子晶体管;设计了石墨烯量子点元器件的全电学操控模式,掌握了精细调节电极控制量子点器件上电子状态的规律和方法;另外我们在国际上率先提出了石墨烯量子点量子计算的完整方案等;我们设计的石墨烯结构和尺寸等方面的优势在国际上也居于比较前列的位置。近期我们也开展了关于TMDs材料方面的量子器件研究,取得了一些重要的实验结果。

“量子芯片”是未来量子计算机的“大脑”。 2016年2月,国际权威杂志《物理评论快报》发表了中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室郭国平研究组在量子芯片开发领域的一项重要进展。该成果由郭国平研究组及合作者完成,首次在砷化镓半导体量子芯片中成功实现了量子相干特性好、操控速度快、可控性强的电控新型编码量子比特。研究组利用半导体量子点的多电子态轨道的非对称特性,首次在砷化镓半导体系统中实现了轨道杂化的新型量子比特,巧妙地将电荷量子比特超快特性与自旋量子比特的长相干特性融为一体,实现了“鱼”和“熊掌”的兼得。实验结果表明,该新型量子比特在超快操控速度方面与电荷量子比特类似,而其量子相干性方面,却比一般电荷编码量子比特提高近十倍。同时,该新型多电子轨道杂化实现量子比特编码和调控的方式具有很强的通用性,对探索半导体中极性声子和压电效应对量子相干特性的影响提供了新思路。

科学家在半导体中生成新类型的量子比特的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于量子芯片替代半导体集成电路、科学家在半导体中生成新类型的量子比特的信息别忘了在本站进行查找喔。

版权声明:本文内容由互联网用户自发贡献,并不意味着本站赞同其观点或已证实其内容的真实性,该文观点仅代表作者本人,本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至48846110@qq.com举报,一经查实,我们会尽快处理删除。

本文地址:https://www.92kepu.com/shulihua/950.html

相关推荐

感谢您的支持
文章目录